Generalized additive modelling of mixed distribution Markov models with application to Melbourne’s rainfall

نویسندگان

  • Rob J. Hyndman
  • Gary K. Grunwald
چکیده

We consider modelling time series using a generalized additive model with first-order Markov structure and mixed transition density having a discrete component at zero and a continuous component with positive sample space. Such models have application, for example, in modelling daily occurrence and intensity of rainfall, and in modelling the number and size of insurance claims. We show how these methods extend the usual sinusoidal seasonal assumption in standard chain-dependent models by assuming a general smooth pattern of occurrence and intensity over time. These models can be fitted using standard statistical software. The methods of Grunwald & Jones (1998) can be used to combine these separate occurrence and intensity models into a single model for amount. We use 36 years of rainfall data from Melbourne, Australia, as a vehicle of illustration, and use the models to investigate the relationship between the Southern Oscillation Index and Melbourne’s rainfall. Department of Econometrics and Business Statistics, Monash University, Clayton VIC 3168, Australia. Department of Preventive Medicine and Biometrics, University of Colorado Health Sciences Center, Denver, CO 80262, USA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Chain Analogue Year Daily Rainfall Model and Pricing of Rainfall Derivatives

In this study we model the daily rainfall occurrence using Markov Chain Analogue Yearmodel (MCAYM) and the intensity or amount of daily rainfall using three different probability distributions; gamma, exponential and mixed exponential distributions. Combining the occurrence and intensity model we obtain Markov Chain Analogue Year gamma model (MCAYGM), Markov Chain Analogue Year exponentia...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Predicting the Potential Habitat Distribution of Crataegus Pontica C. Koch, Using a Combined Modeling Approach in Lorestan Province

Habitat degradation is one the important reasons of plant species extinction. Modeling techniques are widely used for identifying the potential habitats of different plant species. Thus, the purpose of current study was to determine potential habitats of Zalzalak in Lorestan Province. Species presence data and 23 environmental variables were collected in Lorestan Province. Correlation analysis ...

متن کامل

Mixed-state spatio-temporal auto-models

We consider in this paper a general modelling for mixed-state data. Such data consist of two components of different types: the observations record many zeros, together with continuous real values. They occur in many application fields, like rainfall measures, or motion analysis from image sequences. The aim of this work is to present ad hoc spatio-temporal models for these kinds of data. We pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998